Non-symplectic automorphisms of K3 surfaces

Shingo Taki

Tokyo Denki University

October 23, 2012

Outline

- Introduction
 - Preliminaries
 - Automorphisms of K3 surfaces
- Non-symplectic automorphisms
 - Basic results
 - p-elementary lattices
 - Non-symplectic automorphisms on K3 surfaces which act trivially on the Néron-Severi lattice
 - Non-symplectic automorphisms of order 32
- Examples
 - order 2
 - order 16
 - order 32

Introduction

Definition

X: compact complex surface.

$$X: K3 \stackrel{\text{def}}{\Longleftrightarrow} \begin{cases} K_X \sim 0 \\ \dim H^1(X, O_X) = 0 \end{cases}$$

Example

$$\bullet \ X : X_0^4 + X_1^4 + X_2^4 + X_3^4 = 0 \subset \mathbb{P}^3$$

• $X \xrightarrow{2:1} \mathbb{P}^2 \supset \text{(non-singular sextic curve)}$

Proposition

$$\dim H^{2,0}(X) = \dim H^{0,2}(X) = 1$$
, $\dim H^{1,1}(X) = 20$.

X has a nowhere vanishing holomorphic 2-form.

$$H^{2,0}(X) = \mathbb{C}\langle \omega_X \rangle$$

Proposition

 $H^2(X,\mathbb{Z})$ has a structure of a lattice by the cup product.

Definition

- $\bullet S_X := \{x \in H^2(X, \mathbb{Z}) | \langle x, \omega_X \rangle = 0\}$ Néron-Severi lattice
- $T_X := S_X^{\perp}$ in $H^2(X, \mathbb{Z})$ transcendental lattice

 $1 \leq \operatorname{rank} S_X \leq 20$, $2 \leq \operatorname{rank} T_X \leq 21$.

Automorphisms of K3 surfaces

G: finite subgroup of Aut (X).

$$g \in G$$
, $g^*\omega_X = \alpha(g)\omega_X$ where $\alpha(g) \in \mathbb{C}^{\times}$.

We have a homomorphism $\alpha: G \to \mathbb{C}^{\times}$ and an exact sequence $1 \to \operatorname{Ker} \alpha \to G \overset{\alpha}{\to} \mathbb{Z}/I\mathbb{Z} \to 1$.

Example

$$X: X_0^4 + X_1^4 + X_2^4 + X_3^4 = 0 \subset \mathbb{P}^3.$$

- The permutations of coordinates.
- $X_i \mapsto \sqrt{-1}X_i$.

$$G:=\mathfrak{S}_4\ltimes (\mathbb{Z}/4\mathbb{Z})^3 \text{ acts on } X.$$

$$1\to\mathfrak{S}_4\ltimes (\mathbb{Z}/4\mathbb{Z})^2\to G\overset{\alpha}{\to}\mathbb{Z}/4\mathbb{Z}\to 1.$$

Example

$$X \xrightarrow{2:1} \mathbb{P}^2 \supset \text{(non-singular sextic curve)}$$

- The covering transformation induces an automorphism ι on X.
- $\bullet \iota^*\omega_X = -\omega_X.$

$$1 \to 1 \to G := \langle \iota \rangle \xrightarrow{\alpha} \mathbb{Z}/2\mathbb{Z} \to 1.$$

Definition

$$1 \to \operatorname{Ker} \alpha \to G \xrightarrow{\alpha} \mathbb{Z}/I\mathbb{Z} \to 1$$

$$G$$
: symplectic $\stackrel{\text{def}}{\Longleftrightarrow} I = 1$

Theorem (Mukai)

For a finite group G, the following two conditions are equivalent to each other:

- G has a symplectic action on X.
- G has an embedding $G \subset M_{23}$ into the Mathieu group and decomposes $\{1, 2, 3, \ldots, 24\}$ into at least 5 orbits.

Today, we study non-symplectic cases $(I \neq 1)$.

Proposition (Nikulin, Xiao, · · ·)

- Φ : Euler function $\Longrightarrow \Phi(I) | \operatorname{rank} T_X \leq 21$.
- $I \neq 60$. $(\Phi(60) = 16)$

Non-symplectic automorphisms

Definition

 σ : automorphism of order I on X.

$$\sigma$$
: non-symplectic $\stackrel{\text{def}}{\Longleftrightarrow} \sigma^* \omega_X = \zeta_I \omega_X$

where ζ_I is a primitive I-th root of unity.

Proposition (Nikulin)

Let ι be a non-symplectic involution on X.

$$X^{\iota} := \mathsf{Fix}(\iota) = \begin{cases} \phi \\ C^{(1)} \coprod C^{(1)} \\ C^{(g)} \coprod \mathbb{P}^{1} \coprod \cdots \coprod \mathbb{P}^{1} \end{cases}$$

where $C^{(g)}$ is a non-singular curve with genus g.

Proposition (Vorontsov, Kondo)

Assume that σ acts on trivially on S_X .

- If ord σ is prime-power then ord $\sigma = p^k = 2^{\alpha}$, 3^{β} , 5, 5^2 , 7, 11, 13, 17, 19 $(1 \le \alpha \le 4, 1 \le \beta \le 3)$ and S_X is p-elementary.
- If ord σ is non-prime-power then S_X is unimodular.
 - If rank $S_X = 2$ then ord σ | 66, 44 or 12
 - If rank $S_X = 10$ then ord σ |42, 36 or 28
 - If rank $S_X = 18$ then ord $\sigma|12$

The cases were studied by Kondo.

p-elementary lattices

Definition

L: lattice, p: prime number.

 $L^* := \operatorname{Hom}(L, \mathbb{Z}).$

L: p-elementary $\stackrel{\text{def}}{\Longleftrightarrow} L^*/L = (\mathbb{Z}/p\mathbb{Z})^{\oplus a}$.

Example

- $A_2 = \begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix}$ is a 3-elementary lattice with a = 1.
- D_4 is a 2-elementary lattice with a = 2.
- $U = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ is a *p*-elementary lattice with a = 0.

Theorem (Nikulin)

 ι : non-symplectic involution acting trivially on S_X

$$r := \operatorname{rank} S_X$$

$$S_X^*/S_X = (\mathbb{Z}/2\mathbb{Z})^{\oplus a}$$

$$X^{\iota} = \begin{cases} \phi & S_X = U(2) \oplus E_8(2) \\ C^{(1)} \coprod C^{(1)} & S_X = U \oplus E_8(2) \\ C^{(g)} \coprod \mathbb{P}^1 \coprod \cdots \coprod \mathbb{P}^1 & \text{otherwise} \end{cases}$$

$$g = \frac{22 - r - a}{2}, \ \sharp \mathbb{P}^1 = \frac{r - a}{2}$$

p-elementary lattices with some conditions are classified.

- p = 2: V.V. Nikulin
- $p \neq 2$: A.N. Rudakov and I.R. Shafarevich

invariants
$$\leadsto$$
 $\begin{cases} r, a, \delta & p = 2 \\ r, a & p \neq 2 \end{cases}$

Problem

Let σ be a non-symplectic automorphism which acts trivially on S_X .

Describe the fixed locus X^{σ} in terms of the invariants of p-elementary lattices.

Non-symplectic automorphisms which act trivially on S_X

Assume ord $\sigma = p \ge 3$.

$$X^{\sigma} = C^{(g)} \coprod \mathbb{P}^1 \coprod \cdots \coprod \mathbb{P}^1 \coprod \{P_1, \dots, P_M\}$$

where P_i is an isolated point.

$$\chi(X^{\sigma}) = (2-2g) + 2 \times (\sharp \mathbb{P}^1) + M$$

We apply the topological Lefschetz formula.

$$\chi(X^{\sigma}) = \sum_{i=0}^{4} (-1)^{i} \operatorname{tr}(\sigma^{*}|H^{i}(X,\mathbb{R}))$$

$$= 1 - 0 + \operatorname{tr}(\sigma^{*}|S_{X}) + \operatorname{tr}(\sigma^{*}|T_{X}) - 0 + 1$$

$$= 2 + r - \frac{22 - r}{p - 1}$$

Apply the holomorphic Lefschetz formula:

$$\sum_{i=0}^{2} \mathsf{tr}(\sigma^{*}|H^{i}(X, O_{X})) = \sum_{j} a(P_{j}^{u,v}) + \sum_{l} b(C_{l})$$

$$a(P_j^{u,v}) = \frac{1}{(1-\zeta_p^u)(1-\zeta_p^v)}, \ b(C_l) = \frac{1-g(C_l)}{1-\zeta_p} - \frac{\zeta_p C_l^2}{(1-\zeta_p)^2}.$$

Lemma

M is determined by p and r.

If p = 3, 5 or 7 then

$$M=\frac{(p-2)r-2}{p-1}.$$

$$\alpha:=1+\sigma^*+\sigma^{*2}+\cdots+\sigma^{*p-1}, \quad \beta:=1-\sigma^*$$
 $C(X):$ chain complex of X with coefficients in $\mathbb{Z}/p\mathbb{Z}$ $\rho=\beta^i \quad (i=1,2,\ldots,p-1) \leadsto \rho C(X):$ chain subcomplexe.

$H^{\rho}_{a}(X)$: Smith special homology group.

Proposition (Smith exact sequences)

$$\begin{array}{c} \bullet \; \rho = \beta^i \; , \; \bar{\rho} = \beta^{p-i} \quad (i=1,2,\ldots,p-1). \\ \\ \cdots \to H_q^{\bar{\rho}}(X) \oplus H_q(X^\sigma) \to H_q(X) \to H_q^{\rho}(X) \to \cdots \; , \end{array}$$

$$\bullet \cdots \to H_q^{\alpha}(X) \to H_q^{\beta^j}(X) \to H_q^{\beta^{j+1}}(X) \to \cdots$$

By Smith exact sequences, we have the following:

Proposition

$$\sum_{q} \dim H_{q}(X^{\sigma}) = \frac{20 + 2p + (p-2)r - 2(p-1)a}{p-1}.$$

$$\sum_{q} \dim H_q(X^{\sigma}) - \chi(X^{\sigma}) = 2 \dim H_1(X^{\sigma}) = 4g.$$

Theorem (Nikulin, Oguiso, Zhang, Artebani, Sarti, T)

Assume S_X is p-elementary.

$$\exists \sigma : \text{ord } p \iff 22 - r - (p-1)a \in 2(p-1)\mathbb{Z}_{\geq 0}$$

$$X^{\sigma} = C^{(g)} \coprod \mathbb{P}^1 \coprod \cdots \coprod \mathbb{P}^1 \coprod \{P_1, \ldots, P_M\},$$

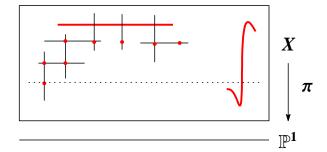
$$g = \frac{22 - r - (p-1)a}{2(p-1)},$$

 $\sharp \mathbb{P}^1$ is also determined by p, r and a.

(If
$$p = 3$$
, 5 or 7 then $\sharp \mathbb{P}^1 = \frac{2 + r - (p - 1)a}{2(p - 1)}$.)

Example of order 7

$$X: y^2 = x^3 + x + t^7,$$
 $S_X = U \oplus E_8$
 $\sigma: (x, y, t) \longmapsto (x, y, \zeta_7 t)$



$$X^{\sigma} = C^{(1)} \coprod \mathbb{P}^1 \coprod \{P_1, \ldots, P_8\}.$$

prime-power order

Theorem

 σ : non-symplectic automorphism of order p^k ($k \geq 2$).

$$X^{\sigma} = \mathbb{P}^1 \coprod \cdots \coprod \mathbb{P}^1 \coprod \{P_1, \ldots, P_M\}.$$

 $\sharp \mathbb{P}^1$ and M are determined by p and r.

- ord $\sigma = 2^k \cdots$ Schütt (rank $T_X = \text{ord } \sigma$), T
- ord $\sigma = 3^2 \cdots T$
- ord $\sigma = 3^3 \cdots$ Oguiso & Zhang
- ord $\sigma = 5^2 \cdots$ Kondo

Problem

Study the following:

- Non-symplectic automorphisms which do NOT act trivially on S_X.
- Symplectic and non-symplectic automorphisms. (e.g., σ : automorphism of order 9 s.t. $\sigma^* = \zeta_3 \omega_X$)

Remark

Let σ be a non-symplectic automorphism of order I.

- Φ : Euler function $\Longrightarrow \Phi(I) | \operatorname{rank} T_X \leq 21$.
- If σ acts on trivially on S_X and I is prime-power then

$$I = p^k = 2^{\alpha}, 3^{\beta}, 5, 5^2, 7, 11, 13, 17, 19$$
$$(1 \le \alpha \le 4, 1 \le \beta \le 3)$$

But
$$\Phi(2^5) = 16$$

Example (Oguiso)

$$X_{\text{og}}: y^2 = x^3 + t^2x + t^{11}$$

$$\sigma_{\text{og}}(x, y, t) = (\zeta_{32}^{18}x, \zeta_{32}^{11}y, \zeta_{32}^2t)$$

 σ_{og} is a non-symplectic automorphism of order 32 which acts on $S_{X_{\text{og}}}$ as involution.

Theorem (T)

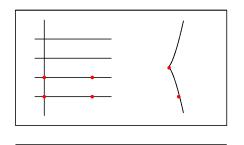
Let X be a K3 surface and σ a non-symplectic automorphism of order 32 on X.

- (1) The fixed locus of σ has exactly six points.
- (2) $(X, \langle \sigma \rangle) \simeq (X_{\text{og}}, \langle \sigma_{\text{og}} \rangle)$

Order 32

$$X: y^2 = x^3 + t^2x + t^{11}$$

$$\sigma: (x, y, t) \mapsto (\zeta_{32}^{18}x, \zeta_{32}^{11}y, \zeta_{32}^2t)$$



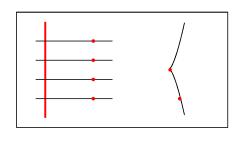
 \mathbb{P}^1

$$X^{\sigma} = \{P_1, \ldots, P_6\}.$$

Order 16

$$X: y^2 = x^3 + t^2x + t^{11}$$

$$\sigma: (x, y, t) \mapsto (\zeta_{16}^2 x, \zeta_{16}^{11} y, \zeta_{16}^2 t)$$



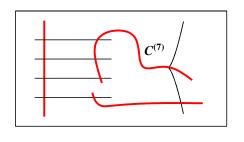
 \mathbb{P}^1

$$X^{\sigma} = \mathbb{P}^1 \coprod \{P_1, \dots, P_6\}.$$

Order 2

$$X : y^2 = x^3 + t^2x + t^{11}$$

 $\sigma : (x, y, t) \mapsto (x, -y, t)$



X

 \mathbb{P}^1

$$X^{\sigma}=C^{(7)} \coprod \mathbb{P}^1 \coprod \mathbb{P}^1.$$